PiHelper: an open source framework for drug-target and antibody-target data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PiHelper: an open source framework for drug-target and antibody-target data

MOTIVATION The interaction between drugs and their targets, often proteins, and between antibodies and their targets, is important for planning and analyzing investigational and therapeutic interventions in many biological systems. Although drug-target and antibody-target datasets are available in separate databases, they are not publicly available in an integrated bioinformatics resource. As m...

متن کامل

ParaDockS - an open-source framework for molecular docking: implementation of target-class-specific scoring methods

Accurate scoring of protein-ligand interactions in molecular docking and virtual screening is still challenging. Despite great efforts, the performance of existing scoring functions strongly depends on the target structure under investigation. Recent developments in the direction of target-class-specific scoring methods and machine-learningbased classification models reveals a significant impro...

متن کامل

Kinetoplast DNA: A Promising Drug Target for Treatment of Leishmaniasis

Leishmaniasis is a vector-borne zoonotic disease caused by various species of the genus Leishmania, (trypanosomatidae family) that is transmitted by phlebotomine sandflies. The disease can present in a range of clinical forms, including dermal lesions, metastasis mucocutaneous forms, and fatal visceral forms. In this non-systematic review, we aimed at introducing the role of kinetoplast DNA (kD...

متن کامل

P14: Mitochondria as a Target for Drug Therapy in Epilepsy

لطفاً به چکیده انگلیسی مراجعه شود.

متن کامل

O-3: Drug Repositioning by Merging Gene Expression Data Analysis and Cheminformatics Target Prediction Approaches

The transcriptional responses of drug treatments combined with a protein target prediction algorithm was utilised to associate compounds to biological genomic space. This enabled us to predict efficacy of compounds in cMap and LINCS against 181 databases of diseases extracted from GEO. 18/30 of top drugs predicted for leukemia (e.g. Leflunomide and Etoposide) and breast cancer (e.g. Tamoxifen a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2013

ISSN: 1367-4803,1460-2059

DOI: 10.1093/bioinformatics/btt345